Physics/6111 Electrodynamics I Dr. Ulrich Jentschura Spring Semester 2025
Missouri S & T (Rolla, Missouri) Exercise Sheet 5 06-FEB—-2025

Task 1 (30 points)
Show by explicit differentiation that
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provided x # 0, y # 0, z # 0 and £ # 0. How is the derived result related to the Green functions

of the Poisson equation in two, three and four dimensions? (Hint: For the first and the second of the
above three equations, you may use your lecture notes and an appropriate notation of your choice, e.g.,
r= 17| = a2+ g + 22.)

Task 2 (30 points)

With the use of Gauss’s theorem (divergence theorem), determine the prefactors which lead to solutions
of the Poisson equations in two, three and four dimensions,
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(Hint: You should formulate the divergence theorem in such a way that it is amenable to a generalization
to four dimension. How would you paramerize a unit sphere imbedded in three dimensions? How would
you paramerize a unit sphere imbedded in four dimensions?)

Task 3 (30 points)

Calculate the Green function of the Poisson equation in three dimensions,
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by Fourier transforming to wave vector space, and backtransforming to position space. Any other solution

will result in zero points.

Task 4 (30 points)
Show that g(xz — z’) is a Green function of the one-dimensional Poisson equation,
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also is a valid Green function of the one-dimensional Poisson equation,
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Also, show that
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is a solution of the homogeneous equation.
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The tasks are due Thursday, 20-FEB-2025. Have fun doing the problems!



