Setting. In the first part of the lecture, we had associated complex numbers with (active) twodimensional rotations (and the modulus of a complex rotation with a "stretch factor" for the complex plane). Now, we deal with passive rotations. Consider rotations in two-dimensional space. (Unmarked part of the exercise: Convince yourself that an active rotation by $+\theta$ is equivalent to a passive rotation by $-\theta$, as far as the coordinates are concerned.)

Task 1 (40 points). Interpret the "usual" basis vectors as the covariant ones. The Cartesian basis vectors are written as $\vec{e}_i = \hat{\mathbf{e}}_i$ with i = 1, 2. Furthermore, interpret the $x^i = (x, y)$ with i = 1, 2 as the "usual" "contravariant" Cartesian coordinates.

Write the basis vectors of the rotated basis (angle θ , passive rotation), denoted as $\tilde{\vec{e}}_i$, as a function of the Cartesian basis vectors $\vec{e}_i = \hat{\mathbf{e}}_i$. Determine the (2×2) -matrix of the $\partial x^j / d\tilde{x}^i$ which enters the relation

$$\widetilde{\vec{e}}_i = \sum_{j=1}^2 \frac{\partial x^j}{\partial \widetilde{x}^i} \, \vec{e}_j \,, \tag{1}$$

where \vec{e}_j is the *j*th usual Cartesian basis vector.

Task 2 (40 points). Based on the invariance of the physical vector \vec{V} under a passive rotation,

$$\widetilde{\vec{V}} = \sum_{i=1}^{2} \widetilde{x}^{i} \ \widetilde{\vec{e}_{i}} = \sum_{i=1}^{2} x^{i} \ \vec{e_{i}} = \vec{V} , \qquad (2)$$

write the \tilde{x}^i as a function of the x^i and determine the matrix which mediates the transformation of the infinitesimal coordinate changes $d\tilde{x}^i$ and dx^i .

The tasks are easy but require you to think about the definitions carefully. SIGNS MATTER IN YOUR SOLUTION! The expression $\sin \theta$ is not equal to $-\sin \theta$.

The tasks are due on Tuesday, 29–OCT–2024.