Task 1 (50 points)
Consider the parameters

$$
\begin{equation*}
\vec{r}=\vec{r}_{1}=5.4 \hat{\mathrm{e}}_{x}+3.4 \hat{\mathrm{e}}_{y}+2.3 \hat{\mathrm{e}}_{z}, \quad \vec{r}^{\prime}=\vec{r}_{2}=5.1 \hat{\mathrm{e}}_{x}+3.3 \hat{\mathrm{e}}_{y}+2.2 \hat{\mathrm{e}}_{z} \tag{1}
\end{equation*}
$$

Define the terms

$$
\begin{align*}
T_{\ell} & =\sum_{m=-\ell}^{\ell} \frac{4 \pi}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}(\theta, \varphi) Y_{\ell m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) \\
& =\sum_{m=-\ell}^{\ell} \frac{4 \pi}{2 \ell+1} \frac{r_{2}^{\ell}}{r_{1}^{\ell+1}} Y_{\ell m}\left(\theta_{1}, \varphi_{1}\right) Y_{\ell m}^{*}\left(\theta_{2}, \varphi_{2}\right) \tag{2}
\end{align*}
$$

where the second line is just a trivial specialization of the first, to the case $\vec{r}=\vec{r}_{1}$ and $\vec{r}^{\prime}=\vec{r}_{2}$, and we anticipate that $r_{2}=r_{<}$, and $r_{1}=r_{>}$(why?). Write a computer symbolic program which calculates, explicitly and numerically,

$$
\begin{equation*}
T_{\ell}, \quad 0 \leq \ell \leq 20 \tag{3}
\end{equation*}
$$

Show that the sum converges slowly, and that the result

$$
\begin{equation*}
\sum_{\ell=0}^{20} T_{\ell} \quad \text { approximates only about } 75 \% \text { of the full result for } \quad \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{4}
\end{equation*}
$$

Then, calculate the first 201 terms $0 \leq \ell \leq 200$ and show that the full result for $1 /|\vec{r}-\vec{r}|$ is obtained to better than 90% agreement.

The tasks are due Thursday, 18-APR-2024, with a possible extension.

