```
=== For the Geeks and Nerds! ===
=== For the Geeks and Nerds! ===
=== For the Geeks and Nerds! ===
```

Task 1 (UNMARKED, HOLIDAYS!) (Boundary-Value Problem) Define $\rho=\sqrt{x^{2}+y^{2}}$ as the distance from the z axis. For the Laplace equation $\vec{\nabla}^{2} \Phi(\vec{r})=0$, you are given a boundary-value problem for a cylinder, whose symmetry axis coincides with the z axis, and which extends from $z=-L / 2$ to $z=L / 2$ (i.e., the cylinder has a length L). The radius of the cylinder is a. The walls of the cylinder are held at potential $\Phi=0$ (grounded), and both end caps held at the electrostatic potential

$$
\begin{equation*}
\Phi\left(x, y, z= \pm \frac{1}{2} L\right)=\Phi_{0}\left(1-\frac{x^{2}+y^{2}}{a^{2}}\right)=\Phi_{0}\left(1-\frac{\rho^{2}}{a^{2}}\right) \tag{1}
\end{equation*}
$$

Explain why a suitable ansatz for the solution of this boundary-value problem is

$$
\begin{equation*}
\Phi(x, y, z)=\sum_{m n} c_{m n} J_{m}\left(\xi_{m n} \frac{\rho}{a}\right) \cosh \left(\xi_{m n} \frac{z}{a}\right) \exp (\mathrm{i} m \varphi) \tag{2}
\end{equation*}
$$

Here, $\xi_{m n}$ is the nth zero of the m th Bessel function,

$$
\begin{equation*}
J_{m}\left(\xi_{m n}\right)=0, \quad m=0,1,2, \ldots, \quad n=1,2,3, \ldots \tag{3}
\end{equation*}
$$

Convince yourself that the only contributing terms have $m=0$, and, on the basis of the theory of Bessel functions, determine $c_{m n}$ and simplify the result as much as possible. (Only terms with $m=0$ will contribute.) If you feel ambitious, plot the resultant series (the first terms in the sum over n) for the parameters $L=a=10 \mathrm{~cm}$ (plotting the axes in units of centimeters), and exhibit the convergence toward the boundary condition.

$$
\begin{aligned}
& ===\text { For the Geeks and Nerds! }=== \\
& ===\text { For the Geeks and Nerds! }=== \\
& ===\text { For the Geeks and Nerds! }====
\end{aligned}
$$

The tasks are unmarked, but I will be happy to have a look at your solutions!

