Task 1 (40 points) (Non-Uniform Convergence) Investigate the potential given in Eq. (6.75) of the lecture notes,

$$
\begin{equation*}
\Phi(x, y)=\frac{4 \Phi_{0}}{\pi} \sum_{n=0}^{\infty} \frac{\sin [(2 n+1) \pi x / a]}{2 n+1} \frac{\sinh [(2 n+1) \pi y / a]}{\sinh [(2 n+1) \pi b / a]} \tag{1}
\end{equation*}
$$

Show the following properties which illustrate the non-uniform convergence at the point $x=0$, and $y=b$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \Phi(0, b-\epsilon)=0, \quad \lim _{\epsilon \rightarrow 0^{+}} \Phi(\epsilon, b)=\Phi_{0} \tag{2}
\end{equation*}
$$

Task 2 (80 points) (Laplace Equation and Potential) Investigate the potential given in Eq. (6.90) of the lecture notes,

$$
\begin{equation*}
\Phi(x, y)=\frac{V_{0}}{\mathrm{i} \pi} \ln \left(\frac{\mathrm{e}^{\mathrm{i} \pi y / b}+\mathrm{e}^{\pi x / b}}{\mathrm{e}^{-\mathrm{i} \pi y / b}+\mathrm{e}^{\pi x / b}}\right) \tag{3}
\end{equation*}
$$

Show that, for real and positive $x>0$, and $0<y<b$, the result for $\Phi(x, y)$ is real rather than complex. Then, plot the potential given in Eq. (3), as a function of x and y, for your preferred choice of the parameter b, over a suitable range of x and y variables.
Task 3 (40 points) (Non-Uniform Convergence) Investigate, once more, Eq. (6.90) of the lecture notes, which is given above in Eq. (3). Show that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \Phi(\epsilon, b)=0, \quad \lim _{\epsilon \rightarrow 0^{+}} \Phi(0, b-\epsilon)=V_{0} \tag{4}
\end{equation*}
$$

For the latter relation, use the result $\lim _{\eta \rightarrow 0^{+}} \ln (-1 \pm i \eta)= \pm i \pi$. Hint: You may want to show that, as you calculate $\lim _{\epsilon \rightarrow 0^{+}} \Phi(0, b-\epsilon)$, you obtain an expression where the imaginary part of the argument of the logarithm is positive.
Task 4 (60 points +20 extra points) (Laplace Equa-
tion) You are given a two-dimensional wedge-shaped region between $\theta=0$ and $\theta=60^{\circ}$, which extends in the radial distance from $\rho=|\vec{\rho}|=\rho_{a}$ to $\rho=|\vec{\rho}|=\rho_{b}$. This constitutes a "piece of cake" with a "bite taken from the inside". Furthermore, you are given the boundary conditions $\Phi(|\vec{\rho}|=a, \theta)=f_{a}(\theta)=\Phi_{a}=\Phi_{0}, \Phi(|\vec{\rho}|=$ $b, \theta)=f_{b}(\theta)=\Phi_{b}=\Phi_{0}$, i.e., a constant potential on the inner and outer edge of the "piece of cake", as well as $\Phi(\rho, \theta=0)=\Phi(\rho, \theta=\beta)=0$. The latter condition implies a vanishing potential on the left and right stripes of the "piece of the cake". Solve the Laplace boundary-value problem

$$
\begin{equation*}
\vec{\nabla}^{2} \Phi(\vec{\rho})=0 \tag{5}
\end{equation*}
$$

using a suitable series expansion of the potential, as in Eqs. (6.123)-(6.128) of the lecture notes. Extra points: Plot the solution. For the parameters $\rho_{a}=0.5, \rho_{b}=2.5$, and $\Phi_{0}=0.95$, show that one obtains (using a suitable number of expansion coefficients) a plot similar to

The tasks are due on Thursday, $02-$ MAY-2024. No extension of the deadline will be possible.

