Task 1 (60 points)
Consider the Poisson equation (in three dimensions) for a charge distribution composed of point charges,

$$
\begin{equation*}
\vec{\nabla}^{2} \Phi(\vec{r})=-\frac{1}{\epsilon_{0}} \rho(\vec{r}), \quad \rho(\vec{r})=q_{1} \delta^{(3)}\left(\vec{r}-\vec{r}_{1}\right)+q_{2} \delta^{(3)}\left(\vec{r}-\vec{r}_{2}\right) \tag{1}
\end{equation*}
$$

Symbols are defined as in the lecture. The two point charges are places at \vec{r}_{1} and \vec{r}_{2}.
(a.) Using the Green function of the three-dimensional Poisson equation, calculate the electrostatic potential $\Phi(\vec{r})$ and the electric field $\vec{E}(\vec{r})$,

$$
\begin{equation*}
\Phi(\vec{r})=-\frac{1}{\epsilon_{0}} \int \mathrm{~d}^{3} r^{\prime} g\left(\vec{r}-\vec{r}^{\prime}\right) \rho\left(\vec{r}^{\prime}\right), \quad \vec{E}(\vec{r})=-\vec{\nabla} \Phi(\vec{r}) \tag{2}
\end{equation*}
$$

by finding an analytic expression involving the parameters $q_{1}, q_{2}, \vec{r}, \vec{r}_{1}$ and \vec{r}_{2}. When calculating the expression $\int \mathrm{d}^{3} r^{\prime} g\left(\vec{r}-\vec{r}^{\prime}\right) \rho\left(\vec{r}^{\prime}\right)$, carefully distiguish independent arguments of functions, integration variables, and parameters!!!
(b.) Assume $q_{1}=0.04 \mathrm{C}$ and $q_{2}=0.16 \mathrm{C}, \vec{r}_{1}=\overrightarrow{0}$, and $\vec{r}_{2}=(3.5 \mathrm{~m}) \hat{\mathrm{e}}_{x}$. Calculate the quantities

$$
\begin{equation*}
\Phi\left(\vec{r}_{a}\right)=?, \quad \vec{E}\left(\vec{r}_{a}\right)=?, \quad \vec{r}_{a}=(0.3 \mathrm{~m}) \hat{\mathrm{e}}_{x}+(1.5 \mathrm{~m}) \hat{\mathrm{e}}_{y}+(0.1 \mathrm{~m}) \hat{\mathrm{e}}_{z} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left(\vec{r}_{b}\right)=?, \quad \vec{E}\left(\vec{r}_{b}\right)=?, \quad \vec{r}_{b}=(-0.3 \mathrm{~m}) \hat{\mathrm{e}}_{x}+(-1.5 \mathrm{~m}) \hat{\mathrm{e}}_{y}+(0.7 \mathrm{~m}) \hat{\mathrm{e}}_{z} \tag{4}
\end{equation*}
$$

Give numerical results for all three vector components of the electric fields at \vec{r}_{a} and \vec{r}_{b}. Express your results in SI mksA units, preferably, to an accuracy of at least 4 decimals! The vacuum permittivity is $\epsilon_{0}=8.8542 \times 10^{-12} \mathrm{CV}^{-1} \mathrm{~m}^{-1}$, so that $1 /\left(4 \pi \epsilon_{0}\right)=8.9875 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.
(c.) Finally, calculate

$$
\begin{equation*}
\Phi_{\mathrm{diff}}=\Phi\left(\vec{r}_{b}\right)-\Phi\left(\vec{r}_{a}\right) \tag{5}
\end{equation*}
$$

Express your results in SI mksA units, preferably, to an accuracy of at least 4 decimals!
Task 2 (60 points)
Write a short essay to develop the concepts of a self-energy of an electrostatic field of a charge distribution, and the interaction energy of an electrostatic field of two charge distributions. Show, by an explicit calculation, the formula

$$
\begin{equation*}
W=2 W_{0}+W_{\mathrm{int}}=2 \times \frac{q^{2}}{8 \pi \epsilon_{0} a}-\frac{q^{2}}{4 \pi \epsilon_{0} R}>0=\frac{q^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{a}-\frac{1}{R}\right) \tag{6}
\end{equation*}
$$

for the total energy stored in the electrostatic field of a configuration consisting of two uniformly charged spheres, each of radius a, of charges $+q$ and $-q$, a distance R apart. You may use lecture notes. Show all your work!
Task 3 (30 points)
Give an expression for the total field energy (sum of self energies and interaction energies) of the electrostatic field of three (!) uniformly charged spheres, each of charge $-q$ and radius a, with centers of the spheres at positions \vec{r}_{1}, \vec{r}_{2} and \vec{r}_{3}.
Task 4 (10 points)
Write a "cheat sheet" with the most important formulas from the lecture, comprising all aspects since the start of the semester.

