Task 1 (30 points)
Show by explicit differentiation that

$$
\begin{align*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \ln \left(\frac{\sqrt{x^{2}+y^{2}}}{a}\right) & =0 \tag{1}\\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} & =0 \tag{2}\\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial \xi^{2}}\right) \frac{1}{x^{2}+y^{2}+z^{2}+\xi^{2}} & =0 \tag{3}
\end{align*}
$$

provided $x \neq 0, y \neq 0, z \neq 0$ and $\xi \neq 0$. How is the derived result related to the Green functions of the Poisson equation in two, three and four dimensions? (Hint: For the first and the second of the above three equations, you may use your lecture notes and an appropriate notation of your choice, e.g., $\left.r \equiv\|\vec{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}.\right)$
Task 2 (30 points)
With the use of Gauss's theorem (divergence theorem), determine the prefactors which lead to solutions of the Poisson equations in two, three and four dimensions,

$$
\begin{align*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) g(x, y) & =\delta^{(2)}(x, y) \tag{4}\\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) g(x, y, z) & =\delta^{(3)}(x, y, z) \tag{5}\\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial \xi^{2}}\right) g(x, y, z, \xi) & =\delta^{(4)}(x, y, z, \xi) \tag{6}
\end{align*}
$$

(Hint: You should formulate the divergence theorem in such a way that it is amenable to a generalization to four dimension. How would you paramerize a unit sphere imbedded in three dimensions? How would you paramerize a unit sphere imbedded in four dimensions?)
Task 3 (30 points)
Calculate the Green function of the Poisson equation in three dimensions,

$$
\begin{equation*}
g\left(\vec{r}-\vec{r}^{\prime}\right)=-\frac{1}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{7}
\end{equation*}
$$

by Fourier transforming to wave vector space, and backtransforming to position space.

Task 4 (30 points)

Show that $g\left(x-x^{\prime}\right)$ is a Green function of the one-dimensional Poisson equation,

$$
\begin{equation*}
g\left(x-x^{\prime}\right)=\frac{\left|x-x^{\prime}\right|}{2}, \quad \frac{\partial^{2}}{\partial x^{2}} g\left(x-x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
\tilde{g}\left(x-x^{\prime}\right)=\Theta\left(x-x^{\prime}\right)\left(x-x^{\prime}\right) \tag{9}
\end{equation*}
$$

also is a valid Green function of the one-dimensional Poisson equation,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \tilde{g}\left(x-x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{10}
\end{equation*}
$$

Also, show that

$$
\begin{equation*}
f\left(x-x^{\prime}\right)=g\left(x-x^{\prime}\right)-\tilde{g}\left(x-x^{\prime}\right) \tag{11}
\end{equation*}
$$

is a solution of the homogeneous equation.

The tasks are due Thursday, $07-\mathrm{MAR}-2024$. Have fun doing the problems!

