Task 1 (40 points)
Consider the three-dimensional generalization of a Taylor expansion,

$$
\begin{align*}
f(\vec{r}) & =f(\overrightarrow{0})+\left.\vec{r} \cdot \vec{\nabla} f(\vec{r})\right|_{\vec{r}=\overrightarrow{0}}+\left.\sum_{i, j=1}^{3} \frac{1}{2!} r_{i} r_{j} \frac{\partial}{\partial r_{i}} \frac{\partial}{\partial r_{j}} f(\vec{r})\right|_{\vec{r}=\overrightarrow{0}}+\ldots \\
\left.\vec{r} \cdot \vec{\nabla} f(\vec{r})\right|_{\vec{r}=\overrightarrow{0}} & =\left.\sum_{i=1}^{3} r_{i} \frac{\partial}{\partial r_{i}} f(\vec{r})\right|_{\vec{r}=\overrightarrow{0}} \tag{1}
\end{align*}
$$

Consider the function

$$
\begin{equation*}
f(\vec{r})=f(x, y, z)=\exp \left[-\left(x+x^{2}+y^{2}+2 z^{2}\right)\right] \tag{2}
\end{equation*}
$$

at the point $x=0.1, y=0.1$, and $z=0.05$. Evaluate the first two terms of the three-dimensional Tyalor expansion at the origin explicitly and show that this expansion leads to the approximation

$$
\begin{equation*}
f(0.1,0.1,0.05)=0.882496 \cdots \approx 1-0.1-0.02=0.88 \tag{3}
\end{equation*}
$$

where the terms 0.1 and 0.02 are obtained from the two subleading terms in the Taylor expansion.
Task 2 (30 points)
Consider the function

$$
\begin{equation*}
f(x, y)=x^{2}+y^{2}+3 x y \tag{4}
\end{equation*}
$$

Show that its two-dimensional Taylor expansion, taken to second order, is equal to the function that you started from.
Task 3 (30 extra points)
Repeat Task 3 for the function

$$
\begin{equation*}
f(x, y, z)=x+y+z+x y+x^{3}+x^{2} y+x y z \tag{5}
\end{equation*}
$$

in three-dimensional space. Show that it is reproduced by its third-order Taylor expansion.
Task 4 (30 points)
Calculate

$$
\begin{equation*}
Q_{1}=\vec{\nabla}^{2} \exp (-r / a), \quad Q_{2}=\vec{\nabla} \exp (-r / a), \quad Q_{2}=\vec{\nabla} \times\left[\hat{\mathrm{e}}_{z} \exp (-r / a)\right] \tag{6}
\end{equation*}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and a is a constant of dimension length.

The tasks are due Tuesday, 22-FEB-2024. Have fun doing the problems!

