Task 1 (50 points)
Consider Stokes's theorem in three dimension, formulated for a general three-dimensional vector field $\vec{F}=\vec{F}(\vec{r})$, and an infinitesimal line element $\mathrm{d} \vec{s}$, and area element $\mathrm{d} \vec{A}$,

$$
\begin{equation*}
\oint_{\partial A} \vec{F}(\vec{s}) \cdot \mathrm{d} \vec{s}=\oint_{\partial A} \vec{F}(\vec{s}(t)) \cdot \frac{\mathrm{d} \vec{s}(t)}{\mathrm{d} t} \mathrm{~d} t=\int_{A}(\vec{\nabla} \times \vec{F}(\vec{r})) \cdot \mathrm{d} \vec{A}, \tag{1}
\end{equation*}
$$

where $\vec{s}=\vec{s}(t)$ parameterizes the boundary of the surface and

$$
\begin{align*}
F(\vec{r}) & =F_{x}(\vec{r}) \hat{\mathrm{e}}_{x}+F_{y}(\vec{r}) \hat{\mathrm{e}}_{y}+F_{z}(\vec{r}) \hat{\mathrm{e}}_{z} \tag{2}\\
\mathrm{~d} \vec{s} & =\hat{\mathrm{e}}_{x} \mathrm{~d} s_{x}+\hat{\mathrm{e}}_{y} \mathrm{~d} s_{y}+\hat{\mathrm{e}}_{z} \mathrm{~d} s_{z} \tag{3}\\
\mathrm{~d} \vec{A} & =\hat{n}|\mathrm{~d} \vec{A}| \tag{4}
\end{align*}
$$

and \hat{n} is the surface normal. In the lecture notes, the theorem is shown for the case of a z oriented surface normal, with reference to a small, but not infinitesimally small surface δA, i.e., when $\delta \vec{A}=\hat{n} \delta A$ is

- Case I: a rectangle, $\hat{n}=\hat{\mathrm{e}}_{z}$, with edges at x and $x+\delta x$, as well as y and $y+\delta y$
(Lecture, done, nothing to do).
One can then applied the "patchwork principle" to conclude that the theorem also holds for a large oriented surface A with boundary ∂A. Include a small write-up of the corresponding lecture notes. Now, show by an explicitly calculation that the theorem also holds when $\delta \vec{A}=\hat{n} \delta A$ is
- Case II: a rectangle, $\hat{n}=\hat{\mathrm{e}}_{x}$, with edges at y and $y+\delta y$, as well as z and $z+\delta z$,
- Case III: a rectangle, $\hat{n}=\hat{\mathrm{e}}_{y}$, with edges at x and $x+\delta x$, as well as z and $z+\delta z$,

Then, explain how the considerations change for

- Case IV: a rectangle, $\hat{n}=-\hat{\mathrm{e}}_{x}$, with edges at y and $y+\delta y$, as well as z and $z+\delta z$,
- Case V: a rectangle, $\hat{n}=-\hat{\mathrm{e}}_{y}$, with edges at x and $x+\delta x$, as well as z and $z+\delta z$,

Hint: How do you have to orient the line integral over $\mathrm{d} \vec{s}$ in each case?
Task 2 (30 points)
Complete the proof of Gauss's theorem for a general vector field $\vec{F}=\vec{F}(\vec{r})$,

$$
\begin{equation*}
\int_{\partial V} \vec{F}(\vec{r}) \cdot \mathrm{d} \vec{A}=\int_{V} \vec{\nabla} \cdot \vec{F}(\vec{r}) \mathrm{d} V \tag{5}
\end{equation*}
$$

with reference to a small, but not infinitesimally small cubic reference volume δV, with edges at x and $x+\delta x, y$ and $y+\delta y$, and z and $z+\delta z$. Consider all sides of the cubic reference volume δV and explain how the "Lego principle" completes the proof for a "macroscopic" reference volume V.
Task 3 (20 points)
Explain how the application of Stokes's and Gauss's theorem transform the Maxwell equations from integral to differential form.

The tasks are due Thursday, 22-FEB-2024. Have fun doing the problems!

