This exercise sheet summarizes important formulas and can be used as a reference sheet as well. We know that the coupling of the vector potential to the current density reads as

$$
\begin{equation*}
\vec{A}_{0}(\vec{r})=\frac{1}{c^{2}} \int \mathrm{~d}^{3} r^{\prime} \mathbb{G}_{R}\left(k, \vec{r}-\vec{r}^{\prime}\right) \cdot \vec{J}_{0}\left(\vec{r}^{\prime}\right) \tag{1}
\end{equation*}
$$

We had encountered three ways to expand the potential into multipole moments.
(i). First Expansion. The first expansion reads as follows:

$$
\begin{equation*}
\mathbb{G}_{R}\left(\vec{r}-\vec{r}^{\prime}, k\right)=\frac{1}{\epsilon_{0}} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \mathrm{i} k j_{\ell}\left(k r_{<}\right) h_{\ell}^{(1)}\left(k r_{>}\right) Y_{\ell m}(\theta, \varphi) Y_{\ell m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) \mathbb{1}_{3 \times 3} \tag{2}
\end{equation*}
$$

We define multipole moments and obtain the vector potential is obtained as follows,

$$
\begin{equation*}
\vec{p}_{\ell m}=\int \mathrm{d}^{3} r j_{\ell}(k r) \vec{J}_{0}(\vec{r}) Y_{\ell m}^{*}(\theta, \varphi), \quad \vec{A}_{0}(\vec{r})=\mathrm{i} \mu_{0} k \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \vec{p}_{\ell m} h_{\ell}^{(1)}(k r) Y_{\ell m}(\theta, \varphi) \tag{3}
\end{equation*}
$$

(ii). Second Expansion. The second expansion involves the vector spherical harmonics,

$$
\begin{equation*}
\mathbb{G}_{R}\left(\vec{r}-\vec{r}^{\prime}, k\right)=\frac{\mathrm{i} k}{\epsilon_{0}} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j} \sum_{\ell=j-1}^{j+1} j_{\ell}\left(k r_{<}\right) h_{\ell}^{(1)}\left(k r_{>}\right) \vec{Y}_{j \mu}^{\ell}(\theta, \varphi) \otimes \vec{Y}_{j \mu}^{\ell *}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{4}
\end{equation*}
$$

The multipole moments read as follows,

$$
\begin{equation*}
p_{j \mu}^{\ell}=\int \mathrm{d}^{3} r j_{\ell}(k r) \vec{J}_{0}(\vec{r}) \cdot \vec{Y}_{j \mu}^{\ell *}(\theta, \varphi), \quad \vec{A}_{0}(\vec{r})=\mathrm{i} \mu_{0} k \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j} \sum_{\ell=j-1}^{j+1} p_{j \mu}^{\ell} h_{\ell}^{(1)}(k r) \vec{Y}_{j \mu}^{\ell}(\theta, \varphi) \tag{5}
\end{equation*}
$$

(iii). Third Expansion. The third expansion involves the Helmholtz Green function,

$$
\begin{align*}
\mathbb{G}_{R}\left(k, \vec{r}-\vec{r}^{\prime}\right)= & \frac{\mathrm{i} k}{\epsilon_{0}} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j}\left(\vec{M}_{j \mu}^{(1)}\left(k, \vec{r}_{>}\right) \otimes \vec{M}_{j \mu}^{(0) *}\left(k, \vec{r}_{<}\right)\right. \\
& \left.+\vec{N}_{j \mu}^{(1)}\left(k, \vec{r}_{>}\right) \otimes \vec{N}_{j \mu}^{(0) *}\left(k, \vec{r}_{<}\right)+\vec{L}_{j \mu}^{(1)}\left(k, \vec{r}_{>}\right) \otimes \vec{L}_{j \mu}^{(0) *}\left(k, \vec{r}_{<}\right)\right) . \tag{6}
\end{align*}
$$

The magnetic and electric multipole, and logitudinal, moments are

$$
\begin{equation*}
m_{j \mu}=\int \mathrm{d}^{3} r^{\prime} \vec{J}_{0}\left(\vec{r}^{\prime}\right) \cdot \vec{M}_{j \mu}^{(0) *}\left(\theta^{\prime}, \varphi^{\prime}\right), \quad n_{j \mu}=\int \mathrm{d}^{3} r^{\prime} \vec{J}_{0}\left(\vec{r}^{\prime}\right) \cdot \vec{N}_{j \mu}^{(0) *}\left(\theta^{\prime}, \varphi^{\prime}\right), \quad l_{j \mu}=\int \mathrm{d}^{3} r^{\prime} \vec{J}_{0}\left(\vec{r}^{\prime}\right) \cdot \vec{L}_{j \mu}^{(0) *}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{7}
\end{equation*}
$$

The vector potential is obtained as

$$
\begin{equation*}
\vec{A}_{0}(\vec{r})=\mathrm{i} k \mu_{0} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j}\left(m_{j \mu} \vec{M}_{j \mu}^{(1)}(k, \vec{r})+n_{j \mu} \vec{N}_{j \mu}^{(1)}(k, \vec{r})+l_{j \mu} \vec{L}_{j \mu}^{(1)}(k, \vec{r})\right) \tag{8}
\end{equation*}
$$

The magnetic, electric and longitudinal multipole functions are as follows (please turn the page over!),

$$
\begin{align*}
\vec{M}_{j \mu}^{(K)}(k, \vec{r}) & =\frac{1}{\sqrt{j(j+1)}} f_{j}^{(K)}(k r) \vec{L} Y_{j \mu}(\theta, \varphi) \tag{9a}\\
\vec{N}_{j \mu}^{(K)}(k, \vec{r}) & =\frac{\mathrm{i}}{k} \vec{\nabla} \times \vec{M}_{j \mu}^{(K)}(k, \vec{r}) \tag{9b}\\
\vec{L}_{j \mu}^{(K)}(k, \vec{r}) & =\frac{1}{k} \vec{\nabla}\left(f_{j}^{(K)}(k r) Y_{j \mu}(\theta, \varphi)\right) \tag{9c}
\end{align*}
$$

Task 1 (100 points)
Consider all three variants of the multipole expansion, given in Eqs. (2), (4) and (6), under the following conditions: First, set

$$
\begin{equation*}
r_{<}=r^{\prime}, \quad \vec{r}^{\prime}=\overrightarrow{0}, \quad r^{\prime}=0 \tag{10}
\end{equation*}
$$

That is, you set $r^{\prime}=0$ explicitly. Which (quite drastic) simplifications result for Eqs. (2), (4) and (6), under this assumption? Hint: Maybe, the sum over ℓ and $m(j$ and $\mu)$ might collapse to a single term, under this assumption? Then, convince yourself that Eqs. (2), (4) and (6), are fulfilled in the case $r^{\prime}=0$. To this end, you might have to look up the formula for $\mathbb{G}_{R}\left(k, \vec{r}-\vec{r}^{\prime}\right)$ in the lecture notes, for the left-hand side. I.e., show that, for $r^{\prime}=0$, the left-hand side (LHS) and right-hand side (RHS) of Eqs. (2), (4) and (6) fulfill

$$
\begin{equation*}
\mathrm{LHS}=\mathrm{RHS}=\frac{\exp (\mathrm{i} k r)}{4 \pi \epsilon_{0} r} \mathbb{1}_{3 \times 3} . \quad r^{\prime}=0 \tag{11}
\end{equation*}
$$

Task 2 (100 points)
Please treat the following current distributions in tasks 1,2 , and 3 , using the $\vec{M}^{(K)}, \vec{N}(K)$, and $\vec{L}^{(K)}$ functions. You may use computer algebra if convenient. In all derivations, you can replace the spherical Bessel functions (but not the Hankel functions) by their short-range asymptotics.
Assume that

$$
\begin{equation*}
\vec{J}_{0}(\vec{r})=\frac{I_{0}}{a^{2}}\left(3 \frac{z^{2}}{r^{2}}-1\right) \exp \left(-\frac{r^{2}}{a^{2}}\right) \hat{\mathrm{e}}_{z} \tag{12}
\end{equation*}
$$

and use all three multipole formalisms. You may replace the Bessel functions by their leading asymptotic behavior for small argument.
Hint: You might obtain

$$
\begin{align*}
n_{10} & =-\frac{\pi}{25 \sqrt{6}} k^{2} a^{3} I_{0}, & n_{30} & =-\frac{\pi}{25} \sqrt{\frac{3}{7}} k^{2} a^{3} I_{0} \tag{13}\\
l_{10} & =-\frac{\pi}{25 \sqrt{3}} k^{2} a^{3} I_{0}, & l_{30} & =\frac{3 \pi}{50 \sqrt{7}} k^{2} a^{3} I_{0} \tag{14}
\end{align*}
$$

Do all the magnetic multipoles vanish, i.e., $m_{j \mu}=0$?
Task 3 (100 points)
Assume that

$$
\begin{equation*}
\vec{J}_{0}(\vec{r})=\frac{I_{0}}{a^{2}}\left(3 \frac{z^{2}}{r^{2}}-1\right) \exp \left(-\frac{r^{2}}{a^{2}}\right) \vec{e}_{+1} \tag{15}
\end{equation*}
$$

Hint: You might obtain

$$
\begin{array}{rlrl}
m_{21} & =-\frac{\pi}{10 \sqrt{10}} k^{2} a^{3} I_{0}, & n_{11}=\frac{\pi}{50 \sqrt{6}} k^{2} a^{3} I_{0} \\
n_{31} & =-\frac{\pi}{25} \sqrt{\frac{2}{7}} k^{2} a^{3} I_{0}, & & l_{11}=\frac{\pi}{50 \sqrt{3}} k^{2} a^{3} I_{0} \\
l_{31} & =\frac{\pi}{25} \sqrt{\frac{3}{14}} k^{2} a^{3} I_{0} \tag{18}
\end{array}
$$

Do all the other multipoles vanish, i.e., $m_{j \mu}=0$?
Task 4 (100 points)
Now here is another current distribution,

$$
\begin{equation*}
\vec{J}_{0}(\vec{r})=\frac{I_{0}}{a^{2}} \frac{z}{a}\left(\frac{y}{a} \hat{\mathrm{e}}_{x}-\frac{x}{a} \hat{\mathrm{e}}_{y}\right) \exp \left(-\frac{r^{2}}{a^{2}}\right) \tag{19}
\end{equation*}
$$

Hint: You might obtain

$$
\begin{equation*}
m_{20}=\mathrm{i} \frac{\pi}{4 \sqrt{30}} k^{2} a^{3} I_{0} \tag{20}
\end{equation*}
$$

Do all the electric and longitudinal multipoles vanish?

The tasks are due Thursday, 07-DEC-2023, with a possible extension to Saturday, 09-DEC-2023.

