Task 1 (30 points). Let $\vec{v}=v_{x} \hat{e}_{x}+v_{y} \hat{e}_{y}+v_{z} \hat{e}_{z}$. Calculate, with definitions as in the lecture,

$$
\begin{equation*}
\left.\mathbb{T}\right|_{\ell=0}=(\vec{v} \otimes \vec{v})_{\ell=0},\left.\quad \mathbb{T}\right|_{\ell=1}=(\vec{v} \otimes \vec{v})_{\ell=1},\left.\quad \mathbb{T}\right|_{\ell=2}=(\vec{v} \otimes \vec{v})_{\ell=2} \tag{1}
\end{equation*}
$$

in terms of the components v_{x}, v_{y} and v_{z}.
Write a short essay on the connection between (i) the ($\ell=1$)-component of the tensor product of two vectors, (ii) the vector cross product, and (iii) Clebsch-Gordon coefficients. Use the lecture notes for this task.
Task 2 (30 points). We had discussed the spin-1 spin matrices in the lecture. Show by explicit calculations, using the explicit form of \mathbb{S}_{3}, that

$$
\begin{equation*}
\mathbb{S}_{3} \vec{e}_{q}=q \vec{e}_{q}, \quad q=-1,0,1 \tag{2}
\end{equation*}
$$

Task 3 (30 points). In the lecture, with a notation clarified therein, we had shown the following relations for the scalar and vector potentials generated by an oscillating source,

$$
\begin{align*}
& \Phi_{0}(\vec{r})=\frac{\mathrm{i} k}{\epsilon_{0}} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j} p_{j \mu} h_{j}^{(1)}(k r) Y_{j \mu}(\theta, \varphi) \tag{3}\\
& \vec{A}_{0}(\vec{r})=\mathrm{i} k \mu_{0} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j}\left(m_{j \mu} \vec{M}_{j \mu}^{(1)}(k, \vec{r})+n_{j \mu} \vec{N}_{j \mu}^{(1)}(k, \vec{r})+l_{j \mu} \vec{L}_{j \mu}^{(1)}(k, \vec{r})\right) \tag{4}
\end{align*}
$$

Show that the Lorentz gauge condition is fulfilled, which reads in the mixed frequency-coordinate representation,

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}_{0}(\vec{r})-\frac{\mathrm{i} \omega}{c^{2}} \Phi_{0}(\vec{r})=0 \tag{5}
\end{equation*}
$$

Task 4 (30 points). For an oscillating source, the vector potential reads as follows,

$$
\begin{equation*}
\vec{A}_{0}(\vec{r})=\mathrm{i} k \mu_{0} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j}\left(m_{j \mu} \vec{M}_{j \mu}^{(1)}(k, \vec{r})+n_{j \mu} \vec{N}_{j \mu}^{(1)}(k, \vec{r})+l_{j \mu} \vec{L}_{j \mu}^{(1)}(k, \vec{r})\right) \tag{6}
\end{equation*}
$$

The electric field could be obtained in two ways. In the first way, one simply writes

$$
\begin{equation*}
\text { (Way 1:) } \quad \vec{A}_{0 \perp}(\vec{r})=\mathrm{i} k \mu_{0} \sum_{j=0}^{\infty} \sum_{\mu=-j}^{j}\left(m_{j \mu} \vec{M}_{j \mu}^{(1)}(k, \vec{r})+n_{j \mu} \vec{N}_{j \mu}^{(1)}(k, \vec{r})\right), \quad \vec{E}_{0}(\vec{r})=\mathrm{i} \omega \vec{A}_{0 \perp}(\vec{r}) . \tag{7}
\end{equation*}
$$

In the second way, one calculates

$$
\begin{equation*}
\text { (Way 2:) } \quad \vec{B}_{0}(\vec{r})=\vec{\nabla} \times \vec{A}_{0}(\vec{r}), \quad \vec{E}_{0}^{\prime}(\vec{r})=\frac{\mathrm{i} c^{2}}{\omega} \vec{\nabla} \times \vec{B}_{0}(\vec{r}) \tag{8}
\end{equation*}
$$

Show the $\vec{E}_{0}(\vec{r})=\vec{E}_{0}^{\prime}(\vec{r})$.

The tasks are due Tuesday, 28-NOV-2023. Extensions, if at all, will be very limited.

